Static Application Security Testing (SAST) All tiers All offerings
If you’re using GitLab CI/CD, you can use Static Application Security Testing (SAST) to check your source code for known vulnerabilities. You can run SAST analyzers in any GitLab tier. The analyzers output JSON-formatted reports as job artifacts.
With GitLab Ultimate, SAST results are also processed so you can:
- Use them in approval workflows.
- Review them in the security dashboard.
For more details, see the Summary of features per tier.
A pipeline consists of multiple jobs, including SAST and DAST scanning. If any job fails to finish for any reason, the security dashboard does not show SAST scanner output. For example, if the SAST job finishes but the DAST job fails, the security dashboard does not show SAST results. On failure, the analyzer outputs an exit code.
Requirements
SAST runs in the test
stage, which is available by default. If you redefine the stages in the .gitlab-ci.yml
file, the test
stage is required.
To run SAST jobs, by default, you need GitLab Runner with the
docker
or
kubernetes
executor.
If you’re using the shared runners on GitLab.com, this is enabled by default.
19.03.0
. See troubleshooting information for details.Supported languages and frameworks
GitLab SAST supports scanning a variety of programming languages and frameworks. Once you enable SAST, the right set of analyzers runs automatically even if your project uses more than one language.
For more information about our plans for language support in SAST, see the category direction page.
Language / framework | Analyzer used for scanning | Minimum supported GitLab version |
---|---|---|
.NET (all versions, C# only) | Semgrep with GitLab-managed rules | 15.4 |
Apex (Salesforce) | PMD | 12.1 |
C | Semgrep with GitLab-managed rules | 14.2 |
C/C++ | Flawfinder | 10.7 |
Elixir (Phoenix) | Sobelow | 11.1 |
Go | Semgrep with GitLab-managed rules | 14.4 |
Groovy1 | SpotBugs with the find-sec-bugs plugin | 11.3 (Gradle) & 11.9 (Maven, SBT) |
Helm Charts | Kubesec | 13.1 |
Java (any build system) | Semgrep with GitLab-managed rules | 14.10 |
Java (Android) | MobSF (beta) | 13.5 |
JavaScript | Semgrep with GitLab-managed rules | 13.10 |
Kotlin (Android) | MobSF (beta) | 13.5 |
Kotlin (General)1 | SpotBugs with the find-sec-bugs plugin | 13.11 |
Kubernetes manifests | Kubesec | 12.6 |
Node.js | NodeJsScan | 11.1 |
Objective-C (iOS) | MobSF (beta) | 13.5 |
PHP | phpcs-security-audit | 10.8 |
Python | Semgrep with GitLab-managed rules | 13.9 |
React | Semgrep with GitLab-managed rules | 13.10 |
Ruby | brakeman | 13.9 |
Ruby on Rails | brakeman | 10.3 |
Scala (any build system) | Semgrep with GitLab-managed rules | 16.0 |
Scala1 | SpotBugs with the find-sec-bugs plugin | 11.0 (SBT) & 11.9 (Gradle, Maven) |
Swift (iOS) | MobSF (beta) | 13.5 |
TypeScript | Semgrep with GitLab-managed rules | 13.10 |
- The SpotBugs-based analyzer supports Gradle, Maven, and SBT. It can also be used with variants like the Gradle wrapper, Grails, and the Maven wrapper. However, SpotBugs has limitations when used against Ant-based projects. We recommend using the Semgrep-based analyzer for Ant-based Java or Scala projects.
End of supported analyzers
GitLab has reached End of Support for the below analyzers. These analyzers have been replaced by the Semgrep-based analyzer.
Language / framework | Analyzer used for scanning | Minimum supported GitLab version | End Of Support GitLab version |
---|---|---|---|
.NET Core | Security Code Scan | 11.0 | 16.0 |
.NET Framework | Security Code Scan | 13.0 | 16.0 |
Go | Gosec | 10.7 | 15.4 |
Java | SpotBugs with the find-sec-bugs plugin | 10.6 (Maven), 10.8 (Gradle) & 11.9 (SBT) | 15.4 |
Python | bandit | 10.3 | 15.4 |
React | ESLint react plugin | 12.5 | 15.4 |
JavaScript | ESLint security plugin | 11.8 | 15.4 |
TypeScript | ESLint security plugin | 11.9, with ESLint in 13.2 | 15.4 |
Multi-project support
GitLab SAST can scan repositories that contain multiple projects.
The following analyzers have multi-project support:
- Bandit
- ESLint
- Gosec
- Kubesec
- NodeJsScan
- MobSF
- PMD
- Security Code Scan
- Semgrep
- SpotBugs
- Sobelow
Enable multi-project support for Security Code Scan
Multi-project support in the Security Code Scan requires a Solution (.sln
) file in the root of
the repository. For details on the Solution format, see the Microsoft reference Solution (.sln
) file.
False positive detection Ultimate All offerings
- Introduced for Ruby in GitLab 14.2.
- Introduced for Go in GitLab 15.8.
GitLab SAST can identify certain types of false positive results in the output of other tools. These results are flagged as false positives on the Vulnerability Report and the Vulnerability Page.
False positive detection is available in a subset of the supported languages and analyzers:
- Go, in the Semgrep-based analyzer
- Ruby, in the Brakeman-based analyzer
Advanced vulnerability tracking Ultimate All offerings
Introduced in GitLab 14.2.
Source code is volatile; as developers make changes, source code may move within files or between files. Security analyzers may have already reported vulnerabilities that are being tracked in the Vulnerability Report. These vulnerabilities are linked to specific problematic code fragments so that they can be found and fixed. If the code fragments are not tracked reliably as they move, vulnerability management is harder because the same vulnerability could be reported again.
GitLab SAST uses an advanced vulnerability tracking algorithm to more accurately identify when the same vulnerability has moved within a file due to refactoring or unrelated changes.
Advanced vulnerability tracking is available in a subset of the supported languages and analyzers:
- C, in the Semgrep-based and Flawfinder analyzers
- C++, in the Flawfinder analyzer only
- C#, in the Semgrep-based analyzer only
- Go, in the Semgrep-based analyzer only
- Java, in the mobsf, Semgrep-based and SpotBugs analyzers
- JavaScript, in the Semgrep-based and NodeJS-Scan analyzers
- PHP, in the phpcs-security-audit analyzer
- Python, in the Semgrep-based analyzer only
- Ruby, in the Brakeman-based analyzer
Support for more languages and analyzers is tracked in this epic.
For more information, see the confidential project https://gitlab.com/gitlab-org/security-products/post-analyzers/tracking-calculator
. The content of this project is available only to GitLab team members.
Automatic vulnerability resolution
-
Introduced in GitLab 15.9 with a project-level flag named
sec_mark_dropped_findings_as_resolved
. - Enabled by default in GitLab 15.10. On GitLab.com, contact Support if you need to disable the flag for your project.
- Feature flag removed in GitLab 16.2.
To help you focus on the vulnerabilities that are still relevant, GitLab SAST automatically resolves vulnerabilities when:
- You disable a predefined rule.
- We remove a rule from the default ruleset.
Automatic resolution is available only for findings from the Semgrep-based analyzer. The Vulnerability Management system leaves a comment on automatically-resolved vulnerabilities so you still have a historical record of the vulnerability.
If you re-enable the rule later, the findings are reopened for triage.
Supported distributions
The default scanner images are built on a base Alpine image for size and maintainability.
FIPS-enabled images
Introduced in GitLab 14.10.
GitLab offers an image version, based on the Red Hat UBI base image, that uses a FIPS 140-validated cryptographic module. To use the FIPS-enabled image, you can either:
- Set the
SAST_IMAGE_SUFFIX
to-fips
. - Add the
-fips
extension to the default image name.
For example:
variables:
SAST_IMAGE_SUFFIX: '-fips'
include:
- template: Security/SAST.gitlab-ci.yml
A FIPS-compliant image is only available for the Semgrep-based analyzer.
run_as_user
attribute under runners.kubernetes.pod_security_context
to use the ID of gitlab
user created by the image, which is 1000
.Summary of features per tier
Different features are available in different GitLab tiers, as shown in the following table:
Capability | In Free & Premium | In Ultimate |
---|---|---|
Automatically scan code with appropriate analyzers | ||
Configure SAST scanners | ||
Customize SAST settings | ||
Download JSON Report | ||
See new findings in merge request widget | ||
See new findings in merge request changes | ||
Manage vulnerabilities | ||
Access the Security Dashboard | ||
Configure SAST by using the UI | ||
Customize SAST rulesets | ||
Detect False Positives | ||
Track moved vulnerabilities |
View SAST results
SAST results are shown in the:
- Merge request widget
- Merge request changes view
- Vulnerability Report
Merge request widget Ultimate All offerings
SAST results display in the merge request widget area if a report from the target branch is available for comparison. The merge request widget displays SAST findings and resolutions that were introduced by the changes made in the merge request.
Merge request changes view Ultimate All offerings
Introduced in GitLab 16.6 with a flag named sast_reports_in_inline_diff
. Disabled by default.
sast_reports_in_inline_diff
.
On GitLab.com, this feature is available.SAST results display in the merge request Changes view. Lines containing SAST issues are marked by a symbol beside the gutter. Select the symbol to see the list of issues, then select an issue to see its details.
Contribute your scanner
The Security Scanner Integration documentation explains how to integrate other security scanners into GitLab.
Configuration
SAST scanning runs in your CI/CD pipeline. When you add the GitLab-managed CI/CD template to your pipeline, the right SAST analyzers automatically scan your code and save results as SAST report artifacts.
To configure SAST for a project you can:
- Use Auto SAST, provided by Auto DevOps.
- Configure SAST in your CI/CD YAML.
- Configure SAST by using the UI.
You can enable SAST across many projects by enforcing scan execution.
Configure SAST in your CI/CD YAML
To enable SAST, you include
the SAST.gitlab-ci.yml
template.
The template is provided as a part of your GitLab installation.
Add the following to your .gitlab-ci.yml
file:
include:
- template: Jobs/SAST.gitlab-ci.yml
The included template creates SAST jobs in your CI/CD pipeline and scans your project’s source code for possible vulnerabilities.
The results are saved as a SAST report artifact that you can later download and analyze. When downloading, you always receive the most recent SAST artifact available.
Configure SAST by using the UI
You can enable and configure SAST by using the UI, either with the default settings or with customizations. The method you can use depends on your GitLab license tier.
Running jobs in merge request pipelines
See Use security scanning tools with merge request pipelines
Configure SAST with customizations Ultimate All offerings
Removed individual SAST analyzers configuration options from the UI in GitLab 16.2.
.gitlab-ci.yml
file, or with a minimal
configuration file. If you have a complex GitLab configuration file it may not be parsed
successfully, and an error may occur.To enable and configure SAST with customizations:
- On the left sidebar, select Search or go to and find your project.
- Select Secure > Security configuration.
- If the project does not have a
.gitlab-ci.yml
file, select Enable SAST in the Static Application Security Testing (SAST) row, otherwise select Configure SAST. -
Enter the custom SAST values.
Custom values are stored in the
.gitlab-ci.yml
file. For CI/CD variables not in the SAST Configuration page, their values are inherited from the GitLab SAST template. - Select Create Merge Request.
- Review and merge the merge request.
Pipelines now include a SAST job.
Configure SAST with default settings only
.gitlab-ci.yml
file, or with a minimal
configuration file. If you have a complex GitLab configuration file it may not be parsed
successfully, and an error may occur.To enable and configure SAST with default settings:
- On the left sidebar, select Search or go to and find your project.
- Select Secure > Security configuration.
- In the SAST section, select Configure with a merge request.
- Review and merge the merge request to enable SAST.
Pipelines now include a SAST job.
Overriding SAST jobs
To override a job definition, (for example, change properties like variables
, dependencies
, or rules
),
declare a job with the same name as the SAST job to override. Place this new job after the template
inclusion and specify any additional keys under it. For example, this enables FAIL_NEVER
for the
spotbugs
analyzer:
include:
- template: Security/SAST.gitlab-ci.yml
spotbugs-sast:
variables:
FAIL_NEVER: 1
Pinning to minor image version
The GitLab-managed CI/CD template specifies a major version and automatically pulls the latest analyzer release within that major version.
In some cases, you may need to use a specific version. For example, you might need to avoid a regression in a later release.
To override the automatic update behavior, set the SAST_ANALYZER_IMAGE_TAG
CI/CD variable
in your CI/CD configuration file after you include the SAST.gitlab-ci.yml
template.
Only set this variable within a specific job. If you set it at the top level, the version you set is used for other SAST analyzers.
You can set the tag to:
- A major version, like
3
. Your pipelines use any minor or patch updates that are released within this major version. - A minor version, like
3.7
. Your pipelines use any patch updates that are released within this minor version. - A patch version, like
3.7.0
. Your pipelines don’t receive any updates.
This example uses a specific minor version of the semgrep
analyzer and a specific patch version of the brakeman
analyzer:
include:
- template: Security/SAST.gitlab-ci.yml
semgrep-sast:
variables:
SAST_ANALYZER_IMAGE_TAG: "3.7"
brakeman-sast:
variables:
SAST_ANALYZER_IMAGE_TAG: "3.1.1"
Using CI/CD variables to pass credentials for private repositories
Some analyzers require downloading the project’s dependencies to perform the analysis. In turn, such dependencies may live in private Git repositories and thus require credentials like username and password to download them. Depending on the analyzer, such credentials can be provided to it via custom CI/CD variables.
Using a CI/CD variable to pass username and password to a private Go repository
If your Go project depends on private modules, see Fetch modules from private projects for how to provide authentication over HTTPS.
To specify credentials via ~/.netrc
provide a before_script
containing the following:
gosec-sast:
before_script:
- |
cat <<EOF > ~/.netrc
machine gitlab.com
login $CI_DEPLOY_USER
password $CI_DEPLOY_PASSWORD
EOF
Using a CI/CD variable to pass username and password to a private Maven repository
If your private Maven repository requires login credentials,
you can use the MAVEN_CLI_OPTS
CI/CD variable.
Read more on how to use private Maven repositories.
Enabling Kubesec analyzer
Introduced in GitLab 12.6.
You need to set SCAN_KUBERNETES_MANIFESTS
to "true"
to enable the
Kubesec analyzer. In .gitlab-ci.yml
, define:
include:
- template: Security/SAST.gitlab-ci.yml
variables:
SCAN_KUBERNETES_MANIFESTS: "true"
Pre-compilation
Most GitLab SAST analyzers directly scan your source code without compiling it first. However, for technical reasons, some analyzers can only scan compiled code.
By default, these analyzers automatically attempt to fetch dependencies and compile your code so it can be scanned. Automatic compilation can fail if:
- your project requires custom build configurations.
- you use language versions that aren’t built into the analyzer.
To resolve these issues, you can skip the analyzer’s compilation step and directly provide artifacts from an earlier stage in your pipeline instead. This strategy is called pre-compilation.
Pre-compilation is available for the analyzers that support the COMPILE
CI/CD variable.
See Analyzer settings for the current list.
To use pre-compilation:
- Output your project’s dependencies to a directory in the project’s working directory, then save that directory as an artifact by setting the
artifacts: paths
configuration. - Provide the
COMPILE: "false"
CI/CD variable to the analyzer to disable automatic compilation. - Add your compilation stage as a dependency for the analyzer job.
To allow the analyzer to recognize the compiled artifacts, you must explicitly specify the path to
the vendored directory.
This configuration can vary per analyzer. For Maven projects, you can use MAVEN_REPO_PATH
.
See Analyzer settings for the complete list of available options.
The following example pre-compiles a Maven project and provides it to the SpotBugs SAST analyzer:
stages:
- build
- test
include:
- template: Security/SAST.gitlab-ci.yml
build:
image: maven:3.6-jdk-8-slim
stage: build
script:
- mvn package -Dmaven.repo.local=./.m2/repository
artifacts:
paths:
- .m2/
- target/
spotbugs-sast:
dependencies:
- build
variables:
MAVEN_REPO_PATH: $CI_PROJECT_DIR/.m2/repository
COMPILE: "false"
artifacts:
reports:
sast: gl-sast-report.json
Available CI/CD variables
SAST can be configured using the variables
parameter in
.gitlab-ci.yml
.
The following example includes the SAST template to override the SEARCH_MAX_DEPTH
variable to 10
. The template is evaluated before the pipeline
configuration, so the last mention of the variable takes precedence.
include:
- template: Security/SAST.gitlab-ci.yml
variables:
SEARCH_MAX_DEPTH: 10
Custom Certificate Authority
To trust a custom Certificate Authority, set the ADDITIONAL_CA_CERT_BUNDLE
variable to the bundle
of CA certs that you want to trust in the SAST environment. The ADDITIONAL_CA_CERT_BUNDLE
value should contain the text representation of the X.509 PEM public-key certificate. For example, to configure this value in the .gitlab-ci.yml
file, use the following:
variables:
ADDITIONAL_CA_CERT_BUNDLE: |
-----BEGIN CERTIFICATE-----
MIIGqTCCBJGgAwIBAgIQI7AVxxVwg2kch4d56XNdDjANBgkqhkiG9w0BAQsFADCB
...
jWgmPqF3vUbZE0EyScetPJquRFRKIesyJuBFMAs=
-----END CERTIFICATE-----
The ADDITIONAL_CA_CERT_BUNDLE
value can also be configured as a custom variable in the UI, either as a file
, which requires the path to the certificate, or as a variable, which requires the text representation of the certificate.
Docker images
The following are Docker image-related CI/CD variables.
CI/CD variable | Description |
---|---|
SECURE_ANALYZERS_PREFIX
| Override the name of the Docker registry providing the default images (proxy). Read more about customizing analyzers. |
SAST_EXCLUDED_ANALYZERS
| Names of default images that should never run. Read more about customizing analyzers. |
SAST_ANALYZER_IMAGE_TAG
| Override the default version of analyzer image. Read more about pinning the analyzer image version. |
SAST_IMAGE_SUFFIX
| Suffix added to the image name. If set to -fips , FIPS-enabled images are used for scan. See FIPS-enabled images for more details. Introduced in GitLab 14.10.
|
Vulnerability filters
Some analyzers make it possible to filter out vulnerabilities under a given threshold.
CI/CD variable | Default value | Description |
---|---|---|
SAST_EXCLUDED_PATHS
| spec, test, tests, tmp
| Exclude vulnerabilities from output based on the paths. This is a comma-separated list of patterns. Patterns can be globs (see doublestar.Match for supported patterns), or file or folder paths (for example, doc,spec ). Parent directories also match patterns. You might need to exclude temporary directories used by your build tool as these can generate false positives. To exclude paths, copy and paste the default excluded paths, then add your own paths to be excluded. If you don’t specify the default excluded paths, you override the defaults and only paths you specify are excluded from the SAST scans.
|
SEARCH_MAX_DEPTH
| 4 | SAST searches the repository to detect the programming languages used, and selects the matching analyzers. Set the value of SEARCH_MAX_DEPTH to specify how many directory levels the search phase should span. After the analyzers have been selected, the entire repository is analyzed.
|
SAST_BANDIT_EXCLUDED_PATHS
| Comma-separated list of paths to exclude from scan. Uses Python’s fnmatch syntax; For example: '*/tests/*, */venv/*' . Removed in GitLab 15.4.
| |
SAST_BRAKEMAN_LEVEL
| 1 | Ignore Brakeman vulnerabilities under given confidence level. Integer, 1=Low 3=High. |
SAST_FLAWFINDER_LEVEL
| 1 | Ignore Flawfinder vulnerabilities under given risk level. Integer, 0=No risk, 5=High risk. |
SAST_GOSEC_LEVEL
| 0 | Ignore Gosec vulnerabilities under given confidence level. Integer, 0=Undefined, 1=Low, 2=Medium, 3=High. Removed in GitLab 15.4. |
Analyzer settings
Some analyzers can be customized with CI/CD variables.
CI/CD variable | Analyzer | Description |
---|---|---|
SCAN_KUBERNETES_MANIFESTS
| Kubesec | Set to "true" to scan Kubernetes manifests.
|
KUBESEC_HELM_CHARTS_PATH
| Kubesec | Optional path to Helm charts that helm uses to generate a Kubernetes manifest that kubesec scans. If dependencies are defined, helm dependency build should be ran in a before_script to fetch the necessary dependencies.
|
KUBESEC_HELM_OPTIONS
| Kubesec | Additional arguments for the helm executable.
|
COMPILE
| Gosec, SpotBugs | Set to false to disable project compilation and dependency fetching. Introduced for SpotBugs analyzer in GitLab 13.1 and Gosec analyzer in GitLab 14.0.
|
ANT_HOME
| SpotBugs | The ANT_HOME variable.
|
ANT_PATH
| SpotBugs | Path to the ant executable.
|
GRADLE_PATH
| SpotBugs | Path to the gradle executable.
|
JAVA_OPTS
| SpotBugs | Additional arguments for the java executable.
|
JAVA_PATH
| SpotBugs | Path to the java executable.
|
SAST_JAVA_VERSION
| SpotBugs | Which Java version to use. Starting in GitLab 15.0, supported versions are 11 and 17 (default). Before GitLab 15.0, supported versions are 8 (default) and 11 .
|
MAVEN_CLI_OPTS
| SpotBugs | Additional arguments for the mvn or mvnw executable.
|
MAVEN_PATH
| SpotBugs | Path to the mvn executable.
|
MAVEN_REPO_PATH
| SpotBugs | Path to the Maven local repository (shortcut for the maven.repo.local property).
|
SBT_PATH
| SpotBugs | Path to the sbt executable.
|
FAIL_NEVER
| SpotBugs | Set to 1 to ignore compilation failure.
|
SAST_GOSEC_CONFIG
| Gosec | Removed in GitLab 14.0 - use custom rulesets instead. Path to configuration for Gosec (optional). |
PHPCS_SECURITY_AUDIT_PHP_EXTENSIONS
| phpcs-security-audit | Comma separated list of additional PHP Extensions. |
SAST_SEMGREP_METRICS
| Semgrep | Set to "false" to disable sending anonymized scan metrics to r2c. Default: true . Introduced in GitLab 14.0. GitLab team members can view more information in this confidential issue: https://gitlab.com/gitlab-org/gitlab/-/issues/330565 .
|
SAST_SCANNER_ALLOWED_CLI_OPTS
| Semgrep | CLI options (arguments with value, or flags) that are passed to the underlying security scanner when running scan operation. Only a limited set of options are accepted. Separate a CLI option and its value using either a blank space or equals (= ) character. For example: name1 value1 or name1=value1 . Multiple options must be separated by blank spaces. For example: name1 value1 name2 value2 . Introduced in GitLab 15.3.
|
Security scanner configuration
SAST analyzers internally use OSS security scanners to perform the analysis. We set the recommended configuration for the security scanner so that you need not to worry about tuning them. However, there can be some rare cases where our default scanner configuration does not suit your requirements.
To allow some customization of scanner behavior, you can add a limited set of flags to the
underlying scanner. Specify the flags in the SAST_SCANNER_ALLOWED_CLI_OPTS
CI/CD variable. These
flags are added to the scanner’s CLI options.
Analyzer | CLI option | Description |
---|---|---|
Semgrep | --max-memory
| Sets the maximum system memory to use when running a rule on a single file. Measured in MB. |
Flawfinder | --neverignore
| Never ignore security issues, even if they have an “ignore” directive in a comment. Adding this option is likely to result in the analyzer detecting additional vulnerability findings which cannot be automatically resolved. |
SpotBugs | -effort
| Sets the analysis effort level. Valid values are min , less , more and max , defined in increasing order of scan’s precision and ability to detect more vulnerabilities. Default value is set to max which may require more memory and time to complete the scan, depending on the project’s size. In case you face memory or performance issues, you may reduce the analysis effort level to a lower value. For example: -effort less .
|
Custom CI/CD variables
Introduced in GitLab 12.5.
In addition to the aforementioned SAST configuration CI/CD variables, all custom variables are propagated to the underlying SAST analyzer images if the SAST vendored template is used.
Experimental features
You can receive early access to experimental features. Experimental features might be added, removed, or promoted to regular features at any time.
Experimental features available are:
- Enable scanning of iOS and Android apps using the MobSF analyzer.
These features were previously experimental, but are now generally available:
- Disable the
eslint.detect-object-injection
in the Semgrep analyzer because it causes a high rate of false positives.- This rule was disabled by default in 15.10.
Enable experimental features
To enable experimental features, add the following to your .gitlab-ci.yml
file:
include:
- template: Security/SAST.gitlab-ci.yml
variables:
SAST_EXPERIMENTAL_FEATURES: "true"
Reports JSON format
SAST outputs a report file in JSON format. The report file contains details of all found vulnerabilities. To download the report file, you can either:
- Download the file from the CI/CD pipelines page.
- In the pipelines tab on merge requests, set
artifacts: paths
togl-sast-report.json
.
For information, see Download job artifacts.
For details of the report file’s schema, see SAST report file schema.
For an example SAST report file, see gl-sast-report.json
example.
Running SAST in an offline environment
For self-managed GitLab instances in an environment with limited, restricted, or intermittent access to external resources through the internet, some adjustments are required for the SAST job to run successfully. For more information, see Offline environments.
Requirements for offline SAST
To use SAST in an offline environment, you need:
- GitLab Runner with the
docker
orkubernetes
executor. - A Docker container registry with locally available copies of SAST analyzer images.
- Configure certificate checking of packages (optional).
GitLab Runner has a default pull_policy
of always
,
meaning the runner tries to pull Docker images from the GitLab container registry even if a local
copy is available. The GitLab Runner pull_policy
can be set to if-not-present
in an offline environment if you prefer using only locally available Docker images. However, we
recommend keeping the pull policy setting to always
if not in an offline environment, as this
enables the use of updated scanners in your CI/CD pipelines.
Make GitLab SAST analyzer images available inside your Docker registry
For SAST with all supported languages and frameworks,
import the following default SAST analyzer images from registry.gitlab.com
into your
local Docker container registry:
registry.gitlab.com/security-products/brakeman:3
registry.gitlab.com/security-products/flawfinder:3
registry.gitlab.com/security-products/kubesec:3
registry.gitlab.com/security-products/nodejs-scan:3
registry.gitlab.com/security-products/phpcs-security-audit:3
registry.gitlab.com/security-products/pmd-apex:3
registry.gitlab.com/security-products/security-code-scan:3
registry.gitlab.com/security-products/semgrep:3
registry.gitlab.com/security-products/sobelow:3
registry.gitlab.com/security-products/spotbugs:3
The process for importing Docker images into a local offline Docker registry depends on your network security policy. Consult your IT staff to find an accepted and approved process by which external resources can be imported or temporarily accessed. These scanners are periodically updated with new definitions, and you may be able to make occasional updates on your own.
For details on saving and transporting Docker images as a file, see the Docker documentation on
docker save
, docker load
,
docker export
, and docker import
.
If support for Custom Certificate Authorities are needed
Support for custom certificate authorities was introduced in the following versions.
Analyzer | Version |
---|---|
bandit 1
| v2.3.0 |
brakeman
| v2.1.0 |
eslint 1
| v2.9.2 |
flawfinder
| v2.3.0 |
gosec 1
| v2.5.0 |
kubesec
| v2.1.0 |
nodejs-scan
| v2.9.5 |
phpcs-security-audit
| v2.8.2 |
pmd-apex
| v2.1.0 |
security-code-scan
| v2.7.3 |
semgrep
| v0.0.1 |
sobelow
| v2.2.0 |
spotbugs
| v2.7.1 |
- These analyzers were deprecated in GitLab 14.8 and reached End of Support in GitLab 15.4.
Set SAST CI/CD variables to use local SAST analyzers
Add the following configuration to your .gitlab-ci.yml
file. You must replace
SECURE_ANALYZERS_PREFIX
to refer to your local Docker container registry:
include:
- template: Security/SAST.gitlab-ci.yml
variables:
SECURE_ANALYZERS_PREFIX: "localhost:5000/analyzers"
The SAST job should now use local copies of the SAST analyzers to scan your code and generate security reports without requiring internet access.
Configure certificate checking of packages
If a SAST job invokes a package manager, you must configure its certificate verification. In an offline environment, certificate verification with an external source is not possible. Either use a self-signed certificate or disable certificate verification. Refer to the package manager’s documentation for instructions.
Running SAST in SELinux
By default SAST analyzers are supported in GitLab instances hosted on SELinux. Adding a before_script
in an overridden SAST job may not work as runners hosted on SELinux have restricted permissions.